
BBEdit version 2.2 User’s Manual Page 1

Searching
Introduction

This section covers BBEdit’s searching capabilities, including:

• Searching for plain text
• Multi-File Searching
• Multi-File Replacing
• Regular-expression matching (“grep”)

Searching for Plain Text

BBEdit’s gives you the ability to search for strings of characters within the current
document, or within multiple files, whether they’re currently open in BBEdit or not. When
you choose “Find…” from the Search menu, BBEdit will present this dialog:

The edit field to the right of “Search For:” contains the string of characters that you wish to
search for. If the “Grep” check box is checked, the string in this edit field is a regular
expression. See “Searching With Grep”, below, for more details.

The edit field to the right of “Replace With:” contains the string of characters that will
replace the current selection whenever you choose “Replace”, “Replace and Find Again”,
or “Replace All” from the Search menu.

BBEdit version 2.2 User’s Manual Page 2

The “Match Case” check box determines whether the search is case-sensitive or not. If
“Match Case” is checked,only text which has the same combination of upper and lower
case letters as the Search For string will be found. For example:

Search String Match Case On Match Case Off
interface interface interface

Interface
INTERFACE
interFaCe
…

The “Entire Word” check box determines whether the text being searched must be bounded
by word breaks.

Search String Entire Word On Entire Word Off
Gestalt Gestalt NewGestalt

Gestalt
DeleteGestalt
GestaltGoofBall
…

The “Wrap Around” check box will cause the entire document to be searched, regardless of
where the current insertion point or selection range lies. Ordinarily, only the text from the
start of the selection range to the end of the document is searched. If “Wrap Around” is
turned on, and the search string isn’t found between the start of the selection range and
the end of the document, the search will automatically restart from the beginning of the
document. If the search string is found in the document after wrapping around, BBEdit will
blink the menu bar to alert you.

If the “Search Backwards” check box is checked, BBEdit will search backwards from the
start of the insertion point to the start of the document, rather than forward to the end of
the document. If “Wrap Around” is checked, and the search string is not found between the
start of the document and the start of the selection range, the backwards search will
resume from the end of the document.

After you have entered the search and replace strings and set the search options
appropriately, you can click “Find”, “Don’t Find”, or “Cancel”. If you click “Find”, BBEdit
will immediately search for the current search and replace strings , using the current
search options . If you click “Don’t Find”, BBEdit will accept the current search strings and
options, but will not perform the search; you can then choose “Find Again” from the
Search menu to start the search.

BBEdit version 2.2 User’s Manual Page 3

The following items on the Search menu are useful while searching within a document:

• Find Again repeats the search for the current search string, using the current
settings. If you hold down the Shift key while choosing this command, the search
direction will be reversed, so that you can search backwards even if you haven’t
turned on the “Search Backwards” switch in the Find… dialog.

• If a range of text is selected, Find Selection will make the selected text the
search string, and then perform a “Find Again”. If you hold down the Shift key
while choosing this command, the search direction will be reversed.

• Enter Selection makes the current selection the search string. You can then
bring up the Find… dialog and change the search options or initiate a multi-file
search.

• Replace replaces the current selection range with the replacement string (the
string entered in the “Replace With:” edit field of the Find… dialog. If there is no
selection range, the replacement string will be inserted at the insertion point.

• Replace & Find Again has the same effect as choosing Replace, followed
by Find Again; it will replace the current selection range with the replacement
string, and then search for the search string using the current search settings. If
you hold down the Shift key while choosing this command, the search direction
will be reversed.

• Replace All replaces all occurrences of the search string with the
replacement string. If “Wrap Around” is turned on in the Find… dialog, the
replacement will be done throughout the entire document; otherwise, only
matching occurrences of the search string between the current selection range
and the end of the document will be replaced.

The “Go To Line…” command is useful for locating a line by number in the current
document. When you choose “Go To Line…”, the following dialog is presented:

In the text field next to “Line:”, enter the number of the line you wish to move to. Once the
line number is entered, click “Go To”, and the insertion point will be placed at the
beginning of the desired line.

BBEdit version 2.2 User’s Manual Page 4

Multi-File Search

BBEdit provides a variety of means for searching through multiple text files at one time in
order to locate the search string. To perform a multi-file search, check the “Multi-File
Search” check box in the Find… dialog:

When you turn on “Multi-File Search”, the “Options…” button is enabled; to set up the
options for a multi-file search, click this button, and the following dialog will appear:

The popup menu next to “Search Method” determines how BBEdit will locate the files to be
searched.

BBEdit version 2.2 User’s Manual Page 5

There are four ways to locate files:

• On Location™. If you have On Location 2.0 installed in your system, BBEdit
will use On Location to search through all of the files that it knows about, and
return to BBEdit all files which contain the search string. By default, BBEdit will
search through all available On Location index files; you can select a single index
to search from the “Search Index:” popup menu.

• Directory Search. When this search method is chosen, BBEdit scans
through the folders starting at the one you choose, and each file that it
encounters will be searched for the search string.

• Open Windows. When you choose this search method, BBEdit searches for
the search string only in document windows that are currently open. This sort of
search is very fast, and may be most convenient if you wish to limit the scope of
your search to a few files.

• Search Results. This search method is only available when the “Search
Results” window is open and contains the results of a previous Batch Find (see
below).

BBEdit version 2.2 User’s Manual Page 6

The check boxes in the “Options…” dialog can be used to tailor the search to your needs:

• Batch Find accumulates the results of the search in progress and display
them all at once in a Search Results window. If this check box is not checked,
then the multi-file search will stop each time it encounters a match, and open the
file that contains the match.

Once the Search Results window is opened, you can double-click on entries in
the window to display any given match, or select multiple matches from different
files and display them all at once.

• Add To Results adds the results of the multi-file search to the existing
Search Results window. This check box will be disabled if “Batch Find” is
unchecked or if the Search Results window is not open.

• Search Nested Folders causes the Directory Scan search to search
folders which are enclosed in the search’s starting directory. If this check box is
turned off, only the files in the starting directory will be searched.

• Skip (…) Folders causes the Directory Scan to skip folders whose names are
enclosed in parentheses. This is useful if you have folders containing text files
that you do not want to search for one reason or another; just enclose the
folders’ names in parentheses, and they will be skipped.

• Search All File Types. If this check box is checked, BBEdit searches files
of all kinds, regardless of whether they contain actual text or not. If it’s not
checked, only text files will be searched.

After you have set the options, click “OK” to save the settings and return to the “Find…”
dialog. If you then click “Find”, the multi-file search will start. If you click “Don’t Find”, the
current settings will be saved, but the multi-file search won’t start until you choose “Find in
Next File” from the Search menu. (If Batch Find is selected, the “Don’t Find” button is
disabled.)

When BBEdit performs a multi-file search, it does so in two steps. First, it constructs a list
of the files to be searched, using the search method specified in the Multi-File Search
Options dialog. Second, it searches each file in the list for the search string. If “Batch Find”
is selected, all occurrences in each file will be displayed in the Search Results window.
Otherwise, each file will be opened to display the first occurrence of the search string; you
can find subsequent occurrences of the search string in the same file by choosing “Find
Again” from the Search menu. If you’re not using Batch Find, you can locate the next file
that contains the search string by choosing “Find In Next File” from the Search menu.

Easter Egg: If you hold down the Option key, “Find In Next File” becomes “Find All
Matches”. If you choose Find All Matches, BBEdit will perform the equivalent of Find In
Next File until every file has been searched; each file that has an occurrence of the search
string will be opened to show the first occurrence of the search string.

BBEdit version 2.2 User’s Manual Page 7

Multi-File Replacing

You can combine the capabilities of BBEdit’s multi-file search with the Replace All
command to perform multi-file replace operations. To do this, set up a multi-file search as
desired, and un-check the “Batch Find” check box. When you return to the “Find…” dialog,
click “Don’t Find”, and then choose “Find & Replace All Matches…” from the Search
menu. You’ll see the following dialog:

This dialog controls the behavior of a multi-file replace operation. There are three levels of
safety that are available:

• Safest. Click on the “Leave Open” radio button. For each file that contains the
search string, BBEdit will perform a “Replace All” on that file, and leave the file
open so that you can inspect the changes.

• Less Safe. Click on the “Save To Disk” radio button, and make sure that the
“Confirm Saves” check box is checked. BBEdit will perform a replace all on each
file that contains the search string, and then ask you what to do:

If you click “Save”, BBEdit will save the changed file. If you click “Don’t Save”,
BBEdit will throw away the changes that were just performed. If you click
“Leave Open”, BBEdit will leave the file open; this is the same behavior as the
“Safest” case, above. If you click “Cancel Search”, BBEdit will stop the multi-file
replace operation.

• Dangerous. Click on the “Save to Disk” radio button, and un-check the “Confirm
Saves” check box. If you do this, BBEdit will perform a Replace All on each file
that contains the search string, and then save the changed file to disk without
asking. You should only use these settings if you’re absolutely
certain of what you’re doing, since the changes are
irreversible.

BBEdit version 2.2 User’s Manual Page 8

Regular-Expression Matching (Grep)

grep is a a method of pattern matching that derives from the Unix™ operating system.
You are probably familiar with simple pattern matching from using word processors;
when you ask a word processor to find all instances of the word "black", it is performing a
simple pattern match, where each letter has to match literally. Matching strings in this
manner is not very hard.

The ability to match strings in a more general manner is both more powerful and more
complicated. It allows for sophisticated pattern matching operations, such as matching
all words that begin with the letter "P" and end with the letters "er", or deleting the first
word of every line. Grep provides a powerful means of doing this.

To use Grep for searching documents, just check the “Grep” check box in the Find…
dialog:

The popup menu next to the “Patterns:” in the dialog contains a list of your most
commonly-used Grep patterns. You can change this list in the “Grep Patterns” section of
the Preferences… dialog.

BBEdit version 2.2 User’s Manual Page 9

How Grep Works

The “grep” mode of searching and replacing is a powerful tool. Although somewhat slower
than normal text searching, grep allows the user to search for one of a set of many strings
instead of a particular string. As a simple example, you can search for any occurrence of
an identifier beginning with the letter P, or all lines that begin with a left brace.

A pattern is a string of characters that, in turn, describes a set of strings of characters.
An example of a set of strings is the set of all strings that begin with the letter P and end
with the letter r; the strings “Ptr” and “ProcPtr” are members of this set. We say that a
string is matched by a pattern if it is a member of the set described by the pattern.
Patterns are composed of sub-patterns which are patterns in themselves; this is how
complicated patterns may be formed.

Some examples of grep patterns:

To replace a Pascal comment with a C comment, you would use
{\([^}]*\)}

to match the comment and
/*\1*/

to replace it.

To change all words that begin with the letter P to begin with the letter Q, you would use
\<P\([A-Za-z0-9]*\)\>

to match the word and
Q\1

to replace it.

To change a list of names; ie:
FrameRect
PaintRect
EmptyRect

to a list of names, followed by strings containing those names; i.e.
FrameRect, "FrameRect",
PaintRect, "PaintRect",
EmptyRect, "EmptyRect",

you would use
\([A-Za-z][A-Za-z]*\)

to match the name and
\1, "\1",

to replace it.

You don't have to understand how these work now; if you do, you may find that you don’t
have to read the rest of this chapter. The following section goes through the grep pattern
matching and replacement rules step by step, so that by the end of it you should be able to
understand how each of these grep patterns works and be able to make your own.

BBEdit version 2.2 User’s Manual Page 10

A note on notation: Writing about patterns and strings can be very confusing, since
patterns and strings are made up of characters, as is this text. Therefore, we use certain
typographical conventions to distinguish various usages.

All literal characters will be in the courier font; therefore, a and xyz refer to those
literal strings of characters.

All patterns, when talked about in the abstract, will be italicized; therefore, p and q refer
to abstract patterns.

All strings, when talked about in the abstract, will be Greek letters; therefore, ß and µ
refer to abstract strings.

Sometimes we will be referring to parts of strings or patterns within longer ones. In these
cases, the parts that are being referred to will be underlined. Therefore, in the string
xxaabx, only the sub-string aab is actually being referred to; the other letters are used
for context.

In the examples, a string that can occur anywhere in a line will be preceded and followed
by an ellipsis (…); i.e. …xyz…. If it can occur only at the beginning of the line, it will only
be followed by an ellipsis; i.e., xyz…. Similarly, if it can occur only at the end of the line, it
will be preceded but not followed by an ellipsis.

In some cases, the state of case sensitivity affects the results of a pattern match. In the
examples we have noted when this is the case.

BBEdit version 2.2 User’s Manual Page 11

Pattern matching

Simple matching

1. Any character, with certain exceptions described below, is a pattern that matches itself.

Examples:

Pattern Text With case sensitivity
X matches …X…

doesn't match …x… on
but matches …x… off

2. A pattern x followed by a pattern y forms a pattern xy that matches any string ßµ
where ß can be matched by x and µ can be matched by y. We can, of course, take the
compound pattern xy and concatenate yet another pattern z onto it, forming the pattern
xyz.

Examples:

Pattern Text With case sensitivity
XY matches …XY…
Ptr matches …Ptr…

doesn't match …ptr… on
but does match …ptr… off

3. The character . is a pattern that will match any character.

Examples:

Pattern Text
P.r matches …Ptr…

and matches …P.r…

.. matches …ab…
and matches …a.…

4. The character \ followed by any character except (,), <, >, or one of the
digits 1-9 is a pattern that matches that character.

Examples:

Pattern Text
P\.r matches …P.r…

but doesn't match …Ptr…

BBEdit version 2.2 User’s Manual Page 12

P\\r matches …P\r…

BBEdit version 2.2 User’s Manual Page 13

5. A string of characters s surrounded by square brackets ([and a]) forms a
pattern [s] that matches a single instance of one of the characters in the string s. Note
that the case sensitivity flag does not apply to characters between square brackets: letters
must match exactly.

Examples:

Pattern Text
[abc] matches …ab…

and matches …xb…
but doesn't match …ab…

[abc][xyz] matches …ax…
but doesn't match …ab…

[abc]x matches …bx…
but doesn't match …Bx…

BBEdit version 2.2 User’s Manual Page 14

5a. The pattern [^ß] matches any character that is not in the string ß. Special
characters will be taken literally in this context. Again, case sensitivity doesn't apply to
characters between square brackets.

Examples:

Pattern Text
[^abc] matches …x…

and matches …A…
but doesn't match …a…

[^abc]a matches …xa…
but doesn't match …aa…

[^.]a matches …xa…
but doesn't match ….a…

5b. If a string of three characters in the form [a-b] occurs in in the pattern p, this
represents all of the characters from a to b inclusive. All special characters are taken
literally; i.e., [!-.] denotes the characters from ! to .. Notice that the only way to
include the character] in p is to make it the very first character. Likewise, the only way
to include the character - in p is to have it either at the very beginning or the very end of
p. Single characters and ranges may both be used between brackets.

Examples:

Pattern Text
[a-c] matches …ac…

and matches …xc…

[1x-z]a matches …1a…
and matches …xa…

[-x-z]a matches …-a…
and matches …xa…

BBEdit version 2.2 User’s Manual Page 15

6. Any pattern p formed by any combination of rules 1 or 3-5b followed by a * forms
the pattern p* that matches zero or more consecutive occurrences of characters matched
by p.

Examples:

Pattern Text With case sensitivity
[a-c]* matches …a

and matches …acbca
and matches nothing

A[a-z]* matches …A…
and matches …Abcb…
and matches …abc… on
but doesn't match …abc… off

.* matches anything from
beginning of a
line to the end of

 the line

[abc]* matches …b
and matches …ab
but doesn't match just …ab
(because it matches
the longest string
possible)

(.*) matches …(aaa)…
and matches …()…

BBEdit version 2.2 User’s Manual Page 16

A closer example:

Let us examine more closely how the pattern (.*) matches text. This pattern will match
any string that is enclosed in parentheses. This includes the string (), since the sub-
pattern .* will match the empty string between the (and the). But what about the
string (())? Since the pattern .* will match any number of occurrences of all
characters, won't it match the (() and cause the last) in the string to fail to match?
Or conversely, won't the sub-pattern (.* match the whole string, leaving the) at the
end of the pattern unmatched?

The answer to this is that any pattern of the form p* in a pattern p*y will match the
largest number of occurrences of whatever p matches that still allows a match to y.
Therefore, in matching (()) against the pattern (.*), only the inner parentheses in
the string (()) will be matched by the sub-pattern .*.

Remembering sub-strings

We now have the ability to form patterns that are composed of sub-patterns, and will find it
useful to "remember" sub-strings matched by sub-patterns and to be able to match against
those substrings.

7. A pattern surrounded by \(and \) is a pattern that matches whatever the sub-
pattern matches. This is useful for matching two or more instances of the same string and
when doing replacements.

Example:

Pattern Text
\(abc\) matches …abc
\(ab(\) matches …ab(

8. A \ followed by n, where n is one of the digits 1-9, is a pattern that matches
whatever was matched by the sub-pattern beginning with the "nth" occurrence of \(. A
pattern \n may be followed by an *, and forms a pattern \n* that matches zero or more
occurrences of whatever \n matches.

Examples:

Pattern Text
\(abc\)\1 matches …abcabc…

\(a.c\)\1 matches …axcaxc…
but not …axcazc…
nor …axcaXc…

Note that in this last pattern, the sub-pattern \1 does not imply a re-application of the

BBEdit version 2.2 User’s Manual Page 17

sub-pattern a.c, but what a.c matches. If \(a.c\) was matched with the string
axc, then the sub-pattern \1 would try to match the literal string axc against the
remainder of the search string. Therefore, the pattern \(a.c\)\1 will match axcaxc,
but will not match axcazc.

BBEdit version 2.2 User’s Manual Page 18

Constraining matches

Sometimes it is useful to be able to "constrain" patterns to match only if certain conditions
in the context outside the string matched are met.

9. A pattern surrounded by \< and \> is a pattern that matches whatever is
matched by the sub-pattern, provided that the first and last characters of the matched
string can be matched by [A-Za-z0-9_] and that the characters immediately
surrounding the matched string cannot be matched by [A-Za-z0-9_] (i.e., can be
matched by [^A-Za-z0-9_]).

This is used to match any string that matches the sub-pattern only if the matched
string begins and ends on a "word" boundary (a "word" being a C identifier).

Examples:

Pattern Text
\<ab*\> matches …+ab+…

but doesn't match …+ab+…
and doesn't match …+abc+

10. A pattern p that is preceded by a ^ forms a pattern ^p. If the pattern ^p is not
preceded by any other pattern, it matches whatever p matches as long as the first
character matched by p occurs at the beginning of a line. If the pattern ^p is preceded by
another pattern, then the ^ is taken literally.

Examples:

Pattern Text
^ab* matches ab…

but doesn't match xab…
ab^ab* matches ab^ab…

11. A pattern p that is followed by a $ forms a pattern p$. If the pattern p$ is not
followed by any other pattern, it matches whatever p matches as long as the last character
matched by p occurs at the end of a line. If the pattern p$ is followed by another pattern,
then the $ is taken literally.

Examples:

Pattern Text
ab$ matches …ab

but doesn't match …abx

ab$ab matches …ab$ab…

BBEdit version 2.2 User’s Manual Page 19

^ab$ matches ab
but doesn't match ab…

BBEdit version 2.2 User’s Manual Page 20

Note that the characters ^ and $ constrain pattern matches to begin or end at line
boundaries, and so can be combined to constrain a pattern to match an entire line only (as
in the above example).

We mentioned at the beginning the ability to search for any identifier beginning with the
letter P. This would be accomplished with the pattern \<[Pp][A-Za-z0-9_]*\>. Note
that, if you have case sensitivity is off, then the patterns \<P[A–Za–z0–9_]*\> and \
<p[A-Za-z0-9_]*\> would match the same strings. Also, if word-match is on, then any
of these patterns with the \< and \> removed will match the same strings.

Replacement

Grep provides not only a more sophisticated method of searching, but a sophisticated
method of replacing as well. In a replacement string, the following substitutions are made
before any text replacement occurs:

1. Each occurrence of the character & is replaced with whatever was last matched by
the pattern.

Examples:

"Find" string "Replace" string Original text Result
abc +& …abc… …+abc…
abc && …abc… …abcabc…

2. Each occurrence of a string of the form \n, where n is one of the digits 1-9, is
replaced by whatever was last matched by the sub-pattern beginning with the nth
occurrence of \(.

Examples:

"Find" string "Replace" string Original text Result
\(a*\)\(b*\) \1\2 aabb… aabb…

\(a*\)\(b*\) \2\1 aabb… bbaa…

3. Each occurrence of a string of the form \p, where p is other than one of the digits
1-9, is replaced by p.

Examples:

"Find" string "Replace" string Original text Result
\(a*\)\(b*\) \1&\2\ aabb… aa&bb…

\(a*\)\(b*\) \\\2\1\\ aabb… \bbaa\…

This allows you to not only be able to search for a string satisfying a complex set of

BBEdit version 2.2 User’s Manual Page 21

conditions, but also to be able to do a subsequent replacement that varies depending on the
string that is matched.

BBEdit version 2.2 User’s Manual Page 22

Some Examples

• Suppose that you have written a program that is to become a Macintosh application
(i.e., it uses the Macintosh ToolBox instead of stdio for the user interface). Suppose also
that you have discovered that you have forgotten to put a \p at the beginning of your
string constants, so that your program is trying to pass C strings instead of Pascal strings
to the ToolBox (which only knows how to deal with Pascal strings). You can easily change
all your C strings to Pascal strings by specifying "\(.*\)" as the search pattern and "\\
p\1" as the replacement string.

• Suppose you decided to reverse the two arguments of the function "foo". You might
try the pattern foo(\([^,]*\),\([^)]*\)) as the search pattern and foo(\2, \1)
as the replacement pattern. How does the search pattern work?

Let's assume we're trying to match some text that looks like foo(1,*bar)
• foo(\([^,]*\),\([^)]*\)) matches foo(1,*bar)
• foo(\([^,]*\),\([^)]*\)) matches foo(1,*bar)
• foo(\([^,]*\),\([^)]*\)) matches foo(1,*bar)
• foo(\([^,]*\),\([^)]*\)) matches foo(1,*bar)
• foo(\([^,]*\),\([^)]*\)) matches foo(1,*bar)

Since \([^,]*\) matched 1 and \([^)]*\) matched *bar, the two
arguments to foo, the replacement pattern foo(\2, \1) will result in foo(*bar, 1)

This, unfortunately, won't work in the case of foo(1,(*bar)+2), since \
([^)]*\) will match only up to the first right parenthesis, leaving +2) unmatched. If
we're sure that all calls to foo end with a semi-colon, however, we can change our pattern
to foo(\([^,]*\),\([^;]*\)); . In this pattern, instead of trying to match the
second argument by matching everything up to the first right parenthesis, we match
everything up to the); which terminates the invocation of foo.

In this example we showed how to analyze a grep pattern by examining sub-patterns. This
is a good way of figuring out how to build a pattern as well. grep can be thought of as a
small and rather cryptic programming language, with each pattern a program and sub-
pattern a statement in this language. If you try to create a grep pattern by testing a small
sub-pattern, then adding and testing additional sub-patterns until the complete pattern is
built, you may find building complex grep patterns not nearly as daunting as you first
thought.

